| 网站首页 | 电源技术 | 电源资料 | 电源论坛 | 电源电路 | 电源人才 | 电源供求 | 留言本站 | 繁體中文 | 
[ ] 文章搜索:
您现在的位置: 电源开发网 >> 电源技术 >> 新手入门 >> 电源基础 >> 正文
简析BOOST-BUCK变换器
http://www.dykf.com  2009-1-18  电源开发网           ★★★

Abstract:A novel BOOST-BUCK converter is proposed in this paper. The converter has a continue input and output current, and wide output voltage range. For the continuous input current, the converter can be used in power factor corrector, and the realization is simple. Since the output voltage could be bigger or smaller than the input voltage, the converter can solve the limitation of the boost converter that its output voltage must bigger than the input voltage. The proposed converter is analyzed, simulated and experimentally verified.

Keyword:BOOST-BUCK converter, BOOST converter, PFC.

Ⅰ 引言

  目前,功率因数校正问题是许多电器设备都需要解决的问题。对此,人们提出了许多的电路拓扑和控制方案来解决它。其中运用较为广泛的是利用BOOST型变换器来做功率因数校正。这是因为BOOST变换器具有许多其他电路拓扑所不具有的优点,例如输入电流连续,控制简单等。但是BOOST变换器的输出电压必须要比输入电压高,这使得在许多场合中需要再增加一级直流变换器来调整其输出电压,例如BUCK变换器。电路如图1所示,造成了电路成本高,驱动复杂等缺点。对此本文提出了一种新型的BOOST-BUCK电路拓扑,其电路结构如图2所示。该变换器具有BOOST型变换器的大多数的优点,同时还具有输出电压可调范围大,输出电流连续等优点。比较图1和图2,我们可以看出BOOST-BUCK变换器是由BOOST变换器加BUCK变换器集成而成的,通过共用功率MOS管Ms来实现功率因数校正和输出电压的调节的。


  文献【2】指出,当利用BOOST变换器做功率因数校正时存在两种主要方法,利用乘法器方法和电压跟随方法。相对于前一种方法,后一种方法仅需要一个开环控制来保持恒定的占空比。当BOOST电路工作在恒占空比的DCM状态就可以实现很高的功率因数。输入电流连续并且近似为正弦波,而且输入电流连续可以进一步减小输入的EMI滤波器。本文采用恒占空比方法来实现功率因数校正。

  在稳定状态,功率MOS管工作在固定的频率和固定的脉宽。相对于BOOST变换器,其工作于DCM状态来实现输入的高功率因数;而BUCK变换器则随着负载的变化或工作在CCM或DCM状态。在一个开关周期内,输入电源相当于一个直流电源,为了分析的方便,我们把图2简化一下,如图3所示。

  假设该变换器已工作在稳定状态。对应与图4,该变换器的一个开关周期内的各个工作模式分析如下:

  模式(a)t0-t1:在t0时刻,功率MOS管导通。相对于BOOST变换器而言,二极管D1反向截止;电感电流iL1 流经Vs, L1, D3, Ms返回Vs。而对于BUCK变换器,二极管D1反向截止;电感电流iL2 流经C1, L2, C2&R2, D2, Ms返回C1。两电感均存储能量。

  模式(b)t1-t2;在t1时刻,功率MOS管关断。相对于BOOST变换器而言,电感电流iL1通过二极管D1续流;电感电流iL1 流经Vs, L1, D3, D1,C1返回Vs。而对于BUCK变换器,电感电流iL2 也通过二极管D1续流,电感电流iL2 流经L2, C2&R2, D2, D1返回L2。两电感均释放能量。

  模式(c)t2-t3;在t2时刻,功率MOS管保持关断状态。电感电流iL1降为零,BOOST变换器暂停工作。BUCK变换器仍然工作在续流状态。

  模式(d)t3-t4;在t3时刻,功率MOS管保持关断状态。电感电流iL2 也降为零。电容C2提供能量给负载。

  图5(a)显示该变换器工作时的一个开关周期内的关键波形。在设计过程中,BOOST变换器的电感L1必须被设计工作在断续状态。如图5(b)所示,输入电流的峰值会自动跟随输入电压,从而实现功率因数校正。


  当要实现功率因数校正时,本变换器采用恒频率恒占空比的控制方法来实现功率因数校正。假设输入的交流电Vin=Vmsinwt,

  则输入电流的峰值:
   (1)

  (1)式中T为开关周期,D为占空比,Ton为开关管的导通时间。从图5(b)可以看出,峰值电流跟随着kVin的包络线。

  当功率开关管关断后,电感向BOOST的输出电容充电,电流下降。电流下降间
   (2)
  (2)式中Vc1为BOOST的输出电容上的电压。
  所以变换器的输入电流

  由(6)式可以确定输入电感L1。
  Ⅲ 仿真及实验结果
  仿真所采用的主电路如图2所示,参数设计如下:交流输入为正弦波,幅值Vin=310V,频率f=50hz;BOOST电感L1=2mH,BUCK电感L2=2mH;BOOST电容C1=470u,BUCK电容C2=100u;功率开关管用IRF840;二极管采用MUR840。输入滤波器电感为2mH,电容为50nf。
  当输出Vout=86V时,负载R=200 欧姆。输入电压、输入电流、输出电压的波形如图6所示。

  一个实验电路被用于验证所用电路的实用性。实验参数如下:开关周期为33Khz;输入交流120V;输入滤波器参数为电感2mH,电容0.33uf;BOOST电感L1=1.3Mh,电容C1=470uf;BUCK电感L2=2.1mH,电容C2=1uf;功率开关管为IRF840;二极管为HER107。驱动采用UC3844进行控制。
  当输出电压Vout=85V时,测得输入电压电流波形如图8所示。

图8 输入电压、输入电流的波形

  当输出电压Vout=225V时,测得输入电压电流波形如图9所示。

图9 输入电压、输入电流的波形

  从图8、图9中可以看出该变换器的输出电压可以高于或低于输入电压,且具有较高的功率因数。

Ⅳ 结论

  本文提出并分析了一种新型的BOOST-BUCK变换器。该变换器具有连续的输入电流和输出电流,且其输出电压可调节范围大。该变换器可用于做直流变换器,也可以用于做功率因数校正。理论分析和实验均验证了该变换器的实用性。


参考文献:

[1].J. Melis. “A power controlled current source, circuit and analysis”.[C] in Proc. IEEE-APEC 1994, vol. 2, pp 856-861.
[2].K.-H. Liu and Y.-L. Lin. “Current waveform distortion in power factor correction circuits employing discontinuous-mode boost converters”.[C] in Pro IEEE PESC’89, 1989, pp. 825–829.
[3].Jai P.Agrawal.Power Electronic Systems Theory and Design [M].Tsinghua University Press.2003
来源:《电源世界》  作者:林清华  …  点击:  录入:admin
收藏此页】【字体: 】【打印此文】【关闭窗口
※相关链接※
网友评论:(只显示最新10条。评论内容只代表网友观点,与本站立场无关!) 发表评论
专 题 栏 目
推 荐 图 书
热 门 文 章
热 门 下 载
热 门 电 路
论 坛 推 荐
精 彩 广 告

关于本站 - 广告服务 - 联系我们 - 版权申明 - 网站地图 - RSS订阅 - 友情链接 - -
Copyright@2004-2014 ◆电源开发网◆ All Rights Reserved